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Problem 1 Connected Matching
suggested by Florian Thomas, Birgit Vogtenhuber, Oswin Aichholzer

Consider a (straight line) maching for a set of n points in the plane in
general position. We say that two edges are connected (via their crossings)
if they intersect. We want to know which size (number of edges) of
a connected set we can guarantee for any given point set of size n.
Figure 1(left) gives an example where the largest connected component
has size n/3.
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Figure 1: Upper bounds for (colored) connected matching edges.

In a variation of the problem n/2 points are colored red, and the other
half is colored blue. We consider bicolored matchings, that is, an edge of
the matching connects a red point to a blue point. Again we ask for the
largest connected set of matching edges any given bicolored point set
admints. Figure 1(right) gives an example of n points where the largest
connected set has size n/4.

For both variants a linear lower bound with small constants (about 1
32

for the uncolored case, worse for the colored case) can be shown. So the
task is to find the right constant for the linear bound.
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Connected Matching

Input: Given n points, n even, in the plane in general position.
Question: What is the largest connected matching you can always
guarantee?

Bicolored Connected Matching

Input: Given n points, n even, in the plane in general position, n/2
colored red, n/2 colored blue.
Question: What is the largest bicolored connected matching you can
always guarantee?
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Problem 2 Recognition of Squares
suggested by Till Miltzow

Given a bunch of geometric objects in the plane, we can define the
intersection graph of those objects. Each object gives rise to a vertex
and any two vertices are adjacent if the corresponding geometric objects
intersect. If we limit the type of geometric objects to say: rays, grounded
segments, segments, circles, unit disks, triangles, heart shapes, etc,
we will get different graph classes. Given one of those classes C, the
recognition question asks if a given graph G belongs to this class or
not. For many geometric shapes we do know ∃R-completeness for the
recognition problem. To the best of my knowledge there is a gap in the
literature for unit-square intersection graphs. It is reasonable to assume
that the complexity of this problem is ∃R-complete [3, 4, 5].

Figure 1: A set of unit squares in the plane gives rise to an intersection
graph.

Question 1 Is recognition of unit-squares graphs ∃R-complete?

One can then go to other shapes, like triangles, ellipses, squares, rectan-
gles and many more geometric shapes. The natural conjecture is that
the recognition problem for all of the corresponding geometric objects is
∃R-complete. Exceptions are only made if the shapes are super simple,
like axis parallel squares, or axis parallel segments [1]. Given a geometric
shape S, we denote by CS the corresponding intersection graph class.

Question 2 For which S is the recognition problem for CS ∃R-complete?

I expect that similar techniques on distinguishing geometric graph
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classes will be useful to study [2]. Having a general framework at
least for convex shapes would indeed deepen, complete and solidify our
intuitive understanding of geometric intersection graphs.

Remark 1 I recently asked the question for unit-segment graphs and we found
that the recognition problem is indeed ∃R-complete.

References
[1] van Leeuwen father and son Convex polygon intersection graphs.

In Graph Drawing 2010

[2] Anders Aamand and Mikkel Abrahamsen and Jakob Bæk Tejs

Knudsen and Peter Michael Reichstein Rasmussen. Classifying
Convex Bodies by Their Contact and Intersection Graphs. In SoCG

[3] Cardinal, Jean and Felsner, Stefan and Miltzow, Tillmann and

Tompkins, Casey and Vogtenhuber, Birgit. Intersection Graphs of
Rays and Grounded Segments. In JGAA 2018

[4] Kratochvíl, Jan and Matoušek, Jiří. Intersection Graphs of Seg-
ments. In Journal of Combinatorial Theory series B

[5] Matoušek, Jiří. Intersection graphs of segments and ∃R. In ArXiv
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Problem 3 Triangles in Arrangements
suggested by Manfred Scheucher

Grünbaum conjectured that every digon-free arrangement on n pair-
wise intersecting pseudocircles contains at least p3 ≥ 2n− 4 triangles.
Even though there are infinitely many arrangements that disprove his
conjecture [1], all known examples contain a specific arrangement N ∆

6
as subarrangement. Since N ∆

6 has no representation with circles (two
different proofs are given in [2]), Grünbaum’s conjecture seems to be
true for arrangements of proper circles.

Figure 1: The non-circularizable arrangement N ∆
6 .

Several questions would be interesting in this context.

1. Can we show that every arrangement of pseudocircles without N ∆
6

contain 2n− 4 triangles? (Is there a combinatorial proof?)

2. Can we show that every arrangement of proper circles contain
2n− 4 triangles? (For arrangements of lines there is a proof based
on linear algebra to show n− 2 triangles. Even though we managed
to generalize this technique to circles, we so far only managed to
show n

2 triangles, which is worse than the 4
3n bound by Snoeyink

and Hershberger.)

3. Can we find a practical technique to certify non-circularizability
such as the method of biquadratic final polynomial by Richter-

8



GGWeek 2022
Gebert? (So far, all non-circularizability proofs are tailored to the
respective arrangement.)

References
[1] Stefan Felsner and Manfred Scheucher. Arrangements of Pseu-

docircles: Triangles and Drawings. In Discrete & Computational
Geometry 65, pages 261–278, 2021.

[2] Stefan Felsner and Manfred Scheucher. Arrangements of Pseu-
docircles: On Circularizability. In Discrete & Computational Geome-
try 64(3), pages 776–813, 2020.
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Problem 4 Maximum Matchings in Yao-
and Θ-graphs

suggested by Philipp Kindermann
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Figure 1: Construction of a (left) Y6-graph; (middle) Θ6-graph; and
(right) Half-Θ6-graph.

The Yao-graph Yk on a set P of points in the plane is a geometric graph
with vertex set P and edges constructed as follows [6]. For every point
p ∈ P, place k rays emanating from p at angles that are multiples of
2π/k radians from the positive x-axis. These rays partition the plane
into k cones C1, . . . , Ck with apex p; see Fig. 1. Add an edge from p to
the closest point in each cone Ci, measured by its Euclidean distance to p.
The Θk-graph on P is defined equivalently, but the distance between the
apex p and a point q in Ci is measured by the Euclidean distance from
p to the projection of q on the bisector of Ci [3, 5]. The Half-Θk-graph
on a point set P is the subgraph of the Θk-graph composed only of the
even-cone edges.

Yao- and Θ-graphs have many nice properties, e.g., they are sparse for
constant k, they are connected for k ≥ 2, and they have constant spanning
ratio for k ≥ 4. Half-Θ6-graphs are equivalent to triangular-distance
Delaunay graphs.

Every Delaunay triangulation contains a (near-)perfect matching, i.e., at
most one point is unmatched [4]. For Yao- and Θ-graphs, equivalent
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results are largely unknown. Babu et al [1] conjectured that every Θ6-
graph has a (near-)perfect matching, but I’m only aware of the following
two results.

Theorem 1 ([1]) Every Half-Θ6-graph on n points has a matching of size
d(n− 1)/3e ≈ n/3, and this bound is tight.

Theorem 2 ([2]) Every Θ6-graph on n points has a matching of size d(3n−
8)/7e ≈ 3n/7.

I’m mainly interested in the following questions, but any variant is fine
as well.

Question 1 Does every Θ4-graph on n points have a matching of size cn−
O(1) with c > 0?

Question 2 Does every Θ6-graph on n points have a matching of size cn−
O(1) with c > 3/7?

Question 3 Does every Y6-graph on n points have a matching of size cn−
O(1) with c > 0?

Question 4 Does every Yk- or Θk-graph on n points have a (near-)perfect
matching for some k ≥ 6?

Maximum Matchings in Yao- and Θ-graphs

Input: A set P of n points in the plane, and an integer k > 0.
Question: What is the largest matching that we can guarantee in Yk
or Θk?

References
[1] J. Babu, A. Biniaz, A. Maheshwari, and M. H. M. Smid. Fixed-

orientation equilateral triangle matching of point sets. Theoretical
Computer Science, 555:55–70, 2014.

[2] T. C. Biedl, A. Biniaz, V. Irvine, K. Jain, P. Kindermann, and

A. Lubiw. Maximum Matchings and Minimum Blocking Sets in
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Θ6-Graphs. In I. Sau and D. M. Thilikos, editors, Proceedings of the
45th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 11789 of Lecture Notes in Computer Science,
pages 258–270. Springer, 2019.

[3] K. L. Clarkson. Approximation algorithms for shortest path motion
planning. In A. V. Aho, editor, Proceedings of the 19th Annual ACM
Symposium on Theory of Computing (STOC), pages 56–65. ACM, 1987.

[4] M. B. Dillencourt. Toughness and Delaunay triangulations. Discrete
and Computational Geometry, 5:575–601, 1990.

[5] J. M. Keil. Approximating the complete Euclidean graph. In R. G.
Karlsson and A. Lingas, editors, Proceedings of the 1st Scandinavian
Workshop on Algorithm Theory (SWAT), volume 318 of Lecture Notes in
Computer Science, pages 208–213. Springer, 1988.

[6] A. C. Yao. On constructing minimum spanning trees in k-
dimensional space and related problems. SIAM Journal on Comput-
ing, 11(4): 721–736, 192.
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Problem 5 Straight Line Drawings of
Planar Graphs

suggested by Antonia Kalb

A drawing is a deformation of another drawing if the positions of the
vertices differ, but not the faces with which they are incident (see Figure
1). We want to know if there are (k-regular) planar drawings which has
always a deformation fulfilling certain properties.

For our research (see Remark 1) we are interested in the following prop-
erties: The outer face of a drawing is convex, if for any three clockwise
following vertices incident to the outer face the outer angle is > 180◦.
We call an inner face “zigzag”-shaped if the face is bounded by two
“interleaving” chains of alternating acute and reflex angles (see Figure
2). If done properly, sub graphs can be placed such that they do not see
each other (edges to connect the sub graphs intersect other edges).

Figure 1: A planar drawing of a 5-regular graph and its deformation
such that the outer face is convex and ever inner face is “zigzag”-shaped
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Figure 2: An inner “zigzag”-shaped face, the extended sub graphs
(green) can not connected by edges without intersections

Defining Properties

Input: Drawing of a connected k-regular planar graph for k ≥ 2
Question: Are there some drawings which always have a deformation
with a convex outer face and only “zigzag”-shaped inner faces?

For example, a planar drawing where a tour on the vertices of the outer
face visits a vertex twice, cannot be deformed such that the outer face is
convex (see Figure 3).

v

Figure 3: Drawing of a 4-regular graph which has no deformation with
a convex outer face

Develop Algorithm

Input: Drawing of a connected k-regular planar graph for k ≥ 2
Question: Can we develop an algorithm which deforms the drawing
such that the outer face is convex and the inner faces are “zigzag”-
shaped?
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Remark 1 (Motivation) A matching M is an edge set that is disjoint to the
edges of a graph and M is compatible if it preserves the planarity of the graphs
fixed straight-line drawing augmented by M. A matching is maximal if it
cannot be expanded to a larger compatible matching. For 0-, 1- and 2-regular
graphs, Pilz et al. [3] proved tight lower bounds for the size of the minimal
maximal compatible matching depending on number of vertices. We [1, 2]
proved lower bounds for 3- and 4-regular graphs, but still search for drawings
to prove the tightness of our bounds. We constructed drawings which reach
very low matching sizes and a formula to compute their matching size without
actually drawing them. This formula could be used to search automatically for
a tight drawing if we know that any automatically generated graph holds the
properties we defined in our construction. These properties are a convex outer
face and only “zigzag”-shaped inner faces. The bounds for 0-, 1- and 2-regular
graphs by [3] are tight due to graphs that correspond to this construction.

References
[1] Buchin, M., Kalb, A. and Zey, B. Augmenting Graphs with Maximal

Matchings In European Workshop on Computational Geometry, 2022.

[2] Kalb, A. Graph-Augmentierung mit maximalen Matchings. Master
thesis (in German), 2021.

[3] Pilz, A., Rollin, J., Schlipf, L. and Schulz, A. Augmenting Ge-
ometric Graphs with Matchings. In Graph Drawing and Network
Visualization, pages 490-504, 2020.
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Problem 6 Snapping graphs to the grid
suggested by Antonia Kalb

Snap rounding is a assignment of vertices of a planar graph to integer
point in N2, such that the resulting straight-line grid drawing is planar.
For line segments, lots of fast algorithms exists [5, 6, 7, 8]. However,
these algorithms are not topologically safe: vertices merge, edges bend
or even faces can disappear while rounding. De Berg et al. [1] developed
a sensitive algorithm for line arrangements. For graphs, minimizing the
area or number of needed grid points is studied well [2, 3, 4, 9].

Topologially Safe Snapping

Input: Planar graph G = (V, E) with real vertex positions r : V 7→ R2

Question: Vertex positions p : V 7→ N2, such that the draw-
ing Π(G, p) is topologically equivalent to drawing Π(G, r), and
∑v∈V |r(v)− p(v)| (Sum of Euclidean distances) is minimized

Löffler et al. [10, 11] proved NP-Hardness for Topologially Safe Snap-
ping and define an ILP. In [10] the approximability of the problem is
discussed and they prove that no fully polynomial-time approximation
scheme and no constant additive approximation exists. But they were
not able to fix the classification.

Question 1 What is the general approximability of Topologially Safe

Snapping?

Löffler et al. [10, 11, 12] designed heuristic approaches and evaluate
these on random graphs.

Question 2 Can we design approximation algorithms for Topologially Safe

Snapping? What guarantees can we provide?
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Figure 1: Some examples of snap roundings, taken from [11]

References
[1] de Berg,Halperin, and Overmars. An intersection-sensitive algo-

rithm for snap rounding. In Comput. Geom., pages 159–165, 2007.

[2] Chrobak and Nakano. Minimum-width grid drawings of plane
graphs. In Comput. Geom., pages 29–54, 1998.

[3] De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph
on a grid. In Combinatorica, pages 41–51, 1990.

[4] Fáry. On straight Lines representation of plane graphs. In ACTA
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Scientiarum Mathematicarum Szeged, 229–233, 1948.

[5] Greene and Yao. Finite-resolution computational geometry. In 27th
Annual Symposium on Foundations of Computer Science, pages 143–152,
1986.

[6] Guibas and Marimont. Rounding Arrangements Dynamically. In
International Journal of Computational Geometry & Applicationspages
157–178, 1998.

[7] Halperin and Packer. Iterated snap rounding. In Computational
Geometry, pages 209–225, 2002.

[8] Hobby. Practical segment intersection with finite precision output.
In Computational Geometry, pages 199–214, 1999.

[9] Krug and D. Wagner. Minimizing the area for planar straight-line
grid drawings. In 15th Int. Symp. Graph Drawing, pages 207–212,
2008.

[10] Löffler. Snapping Graph Drawings to the Grid. Master thesis, 2016.

[11] Löffler, van Dijk, and Wolff. Snapping Graph Drawings to the
Grid Optimally. In 26th International Symposium on Graph Drawing,
pages 144–151, 2016.

[12] Löffler and van Dijk. Practical Topologically Safe Rounding
of Geographic Networks. In 27th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 239–
248, 2019.
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Problem 7 Maps with Tariff Zones
suggested by Soeren Terziadis

The motivation of this problem comes from schematic mapping. Often
we want to overlay a schematic graph drawing with a schematized (in
this case C-oriented, see Figure 1a) polygon to indicate tariff zones, areas
reachable within a certain time, zoning, etc.. Such a polygon will include
some elements (usually vertices) of the graph, and exclude others. Since
we are working within a schematized setting, we use the complexity
of the polygon, i.e., the number of edges on its boundary to measure
its length (instead of euclidean distance). We call such a polygon a
minimum link polygon. So the most straight-forward question would
be to find a C-oriented minimum link polygon P, which includes certain
vertices and excludes others.

(a)
(b)

Figure 1: (a) Map of the metro of Paris with C-oriented tariff zones,
i.e., all edges are parallel to one of |C| orientations. (b) Instance with
unit disks. The orange and green polygons are solutions of size 8. The
orange polygon additionally does not include or cross any edge between
two red vertices.

This would be used in a two step approach of computing the drawing
first and then computing P. However, there might be some simple
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adjustments to the drawing, which might lead to a better solution for P.
To model this, we represent the acceptable area of a vertex as a shape
(unit-disk, square, diamon, etc.). The assumption is that any position
in this area is an acceptable placement of the vertex, independent of
the placement of any other vertex. An instance with two solutions is
sketched in Figure 1b.

Minimum Link C-Oriented Hitting Polygon

Input: Two sets of unit disks A and B
Question: Can we find a minimum link polygon P, s.t., ∀A ∈ A∃a ∈
A : a ∈ P ∧ ∀B ∈ B∀b ∈ B : p 6∈ P? Or more verbose, P includes at
least one point of every A and no point of any B.

Computation of minimum link paths and loop polygons has received
some attention and is related to polygon nesting. Aggarwal et al. [2]
and later Wang [6] present algorithms, which compute a minimum link
polygon surrounding an inner polygon, while being contained in an
outer polygon. Hershberger and Snoeyink [5] presented an algorithm to
compute C-oriented paths and loops within a given C-oriented polygon
with holes, for a predefined homotopy in polynomial time. Adegeest
et al. [1] investigated C-oriented minimum link paths among obstacles
and present a data structure, which allows for O(n log n) construction
time of such a path. Recent results include Baum et al. [3] present a new
linear time heuristic to compute minimum link paths within a given
polygon, which they use to compute minimum link isocontours as an
overlay of road networks. Bonerath et al. [4] compute “tight” C-oriented
hulls of a given polygon, which can not be shrunk in any way, without
overlapping the containing polygons. The key difference is that all
polygons need to be completely contained.

References
[1] John Adegeest, Mark H. Overmars, and Jack Snoeyink. Minimum-

link c-oriented paths: Single-source queries. Int. J. Comput. Geom.
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Appl., 4(1):39–51, 1994.
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and Chee-Keng Yap. Finding minimal convex nested polygons. Inf.
Comput., 83(1):98–110, 1989.

[3] Moritz Baum, Thomas Bläsius, Andreas Gemsa, Ignaz Rutter, and
Franziska Wegner. Scalable exact visualization of isocontours in
road networks via minimum-link paths. J. Comput. Geom., 9(1):27–73,
2018.

[4] Annika Bonerath, Jan-Henrik Haunert, and Benjamin Niedermann.
Tight rectilinear hulls of simple polygons. In Proc. of the 36th European
Workshop on Computational Geometry, EuroCG, 2020.

[5] John Hershberger and Jack Snoeyink. Computing minimum length
paths of a given homotopy class (extended abstract). In Frank K. H. A.
Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors, Algorithms
and Data Structures, 2nd Workshop WADS ’91, Ottawa, Canada, August
14-16, 1991, Proceedings, volume 519 of Lecture Notes in Computer
Science, pages 331–342. Springer, 1991.

[6] Cao An Wang. Finding minimal nested polygons. BIT, 31(2):230–236,
1991.
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Problem 8 Realizability of arc-polygons
suggested by André Schulz

A (circular) arc-polygon is a closed curve with no self-intersections which
is assembled by a finite sequence of circular arcs. See Figure 1 for some
examples. We measure the (interior) angle at a vertex (the point where
two arcs meet) as the angle between the tangents in the interior.

(a) (b) (c) (d)

Figure 1: Four arc-polygons with angle sequences (a):(0, π, π, 0),
(b):(0, π, π, 2π), (c):(0, π, 0, π), (d):(3π/2, 3π/2, 3π/2, 3π/2) .

Eppstein et al. studied the question for which sequences of angles a
realization as an arc-polygon exists. The motivation for this question
stems from the question which graphs have a planar Lombardi drawing
(edges are circular arcs, no crossings, and the angles around a vertex v are
all of size 2π/ deg(v)). In a recent paper it is shown that cactus graphs
do always have an embedding, which can be drawn as a planar Lombardi
drawing but there are also embeddings that cannot be drawn as planar
Lombardi drawings [1]. These results were obtained from a complete
characterization of realizable arc-triangles: Eppstein et al. proved that an
arc-triangle is realizable, iff for i = 1, 2, 3 we have −π < φi < π, where
φi is the angle as depicted in Figure 2.

A complete characterization for general arc-polygons is not known.
However Eppstein et al. provided some partial results.

• If the angular sequence is alternating between 0 and 2π and is
furthermore even it has no realization as an arc-polygon [1].

• If all angles θi are within 0 ≤ θi ≤ π then all sequences can be
realized as an arc-polygon with the only exception of (0, 0, π) [1].
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φ1 < −πθ3
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φ1 + θ2 + φ3 = π

Figure 2: The angles φi at an arc-triangle. Measurements are taking with
respect to the circle passing through the three vertices of the arc-triangle.
Algebraically: φi = θi + (π −∑ θi)/2.

• For the sequence (π/2, π/2, π/2, π/2) all vertices have to lie on a
common circle that does not intersect the arc-polygon [2].

Question 1 Can we give a (more) complete characterization of the angular
sequences that do have a realization as an arc-polygon.

Even a complete charcterization for arc-quadrilaterals would be an
interesting result. One could start with the special case that the 4 points
have to lie on a common circle. A question that might be related is also
the following.

Question 2 Can we triangulate every arc-polygon with circular arcs.

References
[1] David Eppstein, Daniel Frishberg, Martha C. Osegueda Angles

of Arc-Polygons and Lombardi Drawings of Cacti. CCCG 2021,
Halifax, Canada, August 10–12, 2021

[2] David Eppstein A Möbius-Invariant Power Diagram and Its Appli-
cations to Soap Bubbles and Planar Lombardi Drawing. Discrete &
Computational Geometry volume 52, pages 515–550 (2014)
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Problem 9 Queue Number
of Planar Laman Graphs

suggested by Jonathan Rollin

An n-vertex graph G is called a Laman graph if it has exactly 2n− 3 edges
and every subset V ′ ⊆ V(G), with |V ′| ≥ 2, induces a subgraph with no
more than 2|V ′| − 3 edges. Figure 1(left) shows an example of a Laman
graph. Laman graphs come with many different characterizations and
are of particular interest in the theory of rigid graphs. Among other
results, it turned out that the planar Laman graphs form an interesting
subclass of the family of all planar graphs [1].

A linear layout of a graph consists of a total ordering of the vertices and
a partition of the edge set satisfying various constraints. Specifically, the
queue number qn(G) of a graph G is defined as the smallest number k
such that there is a linear layout of G where the edges are partitioned in
to k sets E1, . . . , Ek such that each set does not contain two nested edges.
Here, two edges are called nested, if they are independent and, in the
vertex ordering, the endpoints of one edge are in between the endpoints
of the other edge; see Figure 1 (middle, right) for an illustration.

1

2

3
4

5

6 1 2 3 4 5 6

Figure 1: Left: A planar Laman graph Γ. Middle: Two nested edges.
Right: A 2-queue layout of Γ with edge partition (solid and dashed).

Recently, linear layouts of planar graphs received considerable attention
and substantial progress on several open questions has been made.
For instance, the current best bounds on the queue number of planar
graphs are 4 ≤ qn(G) ≤ 42 [2, 3]. We are interested in linear layouts of
planar Laman graphs. The best upper bound on the queue number of a
planar Laman graph G comes from the bound on general planar graphs
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stated above while a lower bound qn(G) ≥ 2 holds for all so-called
X-trees G [4], which are Laman graphs.

Question 1 What is the largest queue number among all planar Laman
graphs?

There are many ways to attack this question via the different character-
izations of (planar) Laman graphs. Note that general (not necessarily
planar) Laman graphs contain all full 1-subdivisions of complete graphs
as subgraphs and hence their queue number is unbounded [5].

References
[1] Ruth Haas, David Orden, Günter Rote, Francisco Santos,

Brigitte Servatius, Herman Servatius, Diane Souvaine, Ileana

Streinu, Walter Whiteley. Planar minimally rigid graphs and
pseudo-triangulations. In Computational Geometry 31(1): pages
31–61, 2005

[2] Michael A. Bekos, Martin Gronemann, Chrysanthi N.
Raftopoulou. On the Queue Number of Planar Graphs. In Graph
Drawing, pages 271–284, 2021

[3] Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann,
Michael Kaufmann, Sergey Pupyrev. Queue Layouts of Planar
3-Trees. In Algorithmica 82(9): 2564–2585, 2020

[4] Lenwood S. Heath, Arnold L. Rosenberg. Laying out Graphs
Using Queues. In SIAM J. Comput. 21(5): 927–958, 1992

[5] Vida Dujmovic, David R. Wood. Stacks, Queues and Tracks: Layouts
of Graph Subdivisions. In Discret. Math. Theor. Comput. Sci. 7(1):
155–202, 2005
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Problem 10 Saturated k-planar Drawings
suggested by Jonathan Rollin

A drawing of a graph is k-planar if each edge of the graph is crossed
at most k times. These drawings constitute a classical family of beyond
planar graphs and received considerable attention. A fundamental open
question regards the largest number of edges among all k-planar draw-
ings with tight bounds known only for small values of k. Each drawing
with the largest number of edges is clearly saturated, which means that
adding any edge to the drawing violates k-planarity. Interestingly, there
are also much sparser saturated k-planar drawings [1, 2, 3].

Figure 1: From left to right: A 4-planar drawing with 6n− 12 edges,
a 4-planar drawing of a cycle, a 6-planar drawing of a matching. All
drawings are saturated (if loops and parallel edges are not allowed).

We are interested in the question which graphs admit a saturated k-
planar drawing for some k. To work on this question it is necessary to
decide which type of drawing is considered. Most results on k-planar
drawings consider simple drawings, that is, drawings where any two
edges intersect at most once (in other words: loops, parallel edges,
selfcrossing edges, crossing incident edges, and edges crossing more
than once are not allowed). But also non-simple drawings are interesting
and have been studied as well [3, 4]. To work with different types of
drawings we define so-called drawing styles, which are just classes
of drawings, e.g., the class of all k-planar simple drawings forms one
particular drawing style.
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Saturated k-planar Drawings

Input: Given a drawing style Γ.
Question: Determine for which graphs G there is some k such that G
admits a saturated k-planar drawing in Γ.
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Problem 11 2-Colored Crossing Number
suggested by Birgit Vogtenhuber

Let S be a set of n points in the plane in general position, that is, no
three points are on a line. Consider the straight-line drawing D of the
complete graph Kn which has the points of S as vertices. We want
to color the edges of D with two colors in a way that the number of
monochromatic crossings (that is, crossings between edges of the same
color) is minimized. We are interested in how efficiently such a coloring
can be computed.

Figure 1: A drawing of K7 with a non-optimal edge-coloring and 6
monochromatic crossings.

Definition 1 Let D be a (straight-line) drawing of a graph G (on top of a point
set S). The 2-colored crossing number cr2(D) of D is the minimum over all
edge 2-colorings χ(D) of the number of monochromatic crossings in χ(D).

Computing the 2-Colored Crossing Number cr2(D)
Input: A straight-line drawing D of Kn

Question: How fast can we compute 2-coloring of D that has only
cr2(D) monochromatic crossings?

Remark 1 If S is in convex position then an optimal 2-coloring of the straight-
line drawing of Kn on S can be efficiently computed [1].

Remark 2 If instead of the complete graph, we are given a straight-line draw-

28



GGWeek 2022
ing of a general graph G on a point set S, then the problem of deciding whether
cr2(D) ≤ k is NP-hard, even if S is in convex position [2].

Complexity of deciding cr2(D) ≤ k
Input: A straight-line drawing D of Kn and an integer k
Question: What is the compexity of deciding whether cr2(D) ≤ k?

Remark 3 The question is identical to finding a maximum cut in the crossing
graph, that is, the intersection graph of the edges of D where enpoints are not
part of the edges.

Question 1 What if we allow a constant number c > 2 of colors?
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